

Dynamic Programming Dynamic Programming
IIII

By Harry WigginsBy Harry Wiggins

Summary
• DP is a confusing name for a programming

technique that dramatically reduces the
runtime from exponential to polynomial
time.

• The trick is to find the subproblem within
the problem and to come up with the
recursive relationship.

• Then to figure out the right order to fill
the table(especially 2D DP problems).

Example 1 : Longest
increasing subsequence

• Subproblem : best[i] is the answer
for the sequence s_i, … s_n.

• Recursive formula :
best[i]=max{best[j] : j>i and s_j>s_i}.

• Order : best[n]=1. Then calculate
best[n-1], …. , best[1]. The answer is
best[1].

Example 2 : Hidden DP
 Given a word what is the least number of letters

you need to insert anywhere to make it a
palindromic word?

 Q : BANANA

 A : 1 (add B at end)

 Did you know : aibohphobia is the fear of
palindromes?

Solution
• Looking for longest palindromic

subset.
• Note it’s a match between string and

its reverse.
• Need to find longest common

substring (did last time also)
• (IOI 2000 Day 1 Question 1)

Example 3 : Integer
knapsack

 You are designing a contest which isn’t
allowed to be longer than a certain
predetermined length. You are also given a
set of problems. Each problem has a point
value and a certain length. Find the
contest which has the maximum number of
points but within the length constraint.

Need to be careful!
• Can’t re-use a problem.
• Subproblem is most points for length l

contest after using m problems.
• best[l][m]=max(best[l][m-1],best[l-

length(m)][m-1])
• However we can be space efficient.
• If we update in the right order we only

need ??? one dimensional arrays.

Example 4 : Breaking
strings

The cost of breaking a string is its length.
You are given a string and posititions you
want to break it, you need to calculate the
least cost (ie the order) of doing that.

Ie. n = 20, break at 3,8,10.
If left to right it is 49. Best?

Solution
• Look it at differently.
• for each segment (i,j) let cost(i,j) be

the least
• cost(i,j) = least{(cost(i,p) + cost(p,j) +

length(i,j) : all p}
• This is 0(n^3).
• It turns out we can do better.

Improvement
• Let P(i,j) be the position where

cost(i,j) is minimized.
• It can be shown (icky maths) that
cost(i,j) = least{cost(i,k) + cost(k,j) :

P(i,j-1) <= k <= P(i+1,j)}
• Complexity?
• O(n^2)

 The End.

	Dynamic Programming II
	Summary
	Example 1 : Longest increasing subsequence
	Example 2 : Hidden DP
	Solution
	Example 3 : Integer knapsack
	Need to be careful!
	Example 4 : Breaking strings
	Solution
	Improvement
	Slide 11

