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Summary
• DP is a confusing name for a programming 

technique that dramatically reduces the 
runtime from exponential to polynomial 
time. 

• The trick is to find the subproblem within 
the problem and to come up with the 
recursive relationship.

• Then to figure out the right order to fill 
the table(especially 2D DP problems).



  

Example 1 : Longest 
increasing subsequence

• Subproblem : best[i] is the answer 
for the sequence s_i, … s_n. 

• Recursive formula : 
best[i]=max{best[j] : j>i and s_j>s_i}.

• Order : best[n]=1. Then calculate 
best[n-1], …. , best[1]. The answer is 
best[1].



  

Example 2 : Hidden DP
    Given a word what is the least number of letters 

you need to insert anywhere to make it a 
palindromic word?

    Q : BANANA

   A : 1 (add B at end)

   Did you know : aibohphobia is the fear of 
palindromes?



  

Solution
• Looking for longest palindromic 

subset.
• Note it’s a match between string and 

its reverse.
• Need to find longest common 

substring (did last time also)
• (IOI 2000 Day 1 Question 1)



  

Example 3 : Integer 
knapsack

   You are designing a contest which isn’t 
allowed to be longer than a certain 
predetermined length. You are also given a 
set of problems. Each problem has a point 
value and a certain length. Find the 
contest which has the maximum number of 
points but within the length constraint. 



  

Need to be careful!
• Can’t re-use a problem.
• Subproblem is most points for length l 

contest after using m problems.
• best[l][m]=max(best[l][m-1],best[l-

length(m)][m-1])
• However we can be space efficient.
• If we update in the right order we only 

need ??? one dimensional arrays.



  

Example 4 : Breaking 
strings

The cost of breaking a string is its length. 
You are given a string and posititions you 
want to break it, you need to calculate the 
least cost (ie the order) of doing that.

Ie. n = 20, break at 3,8,10.
If left to right it is 49. Best? 



  

Solution
• Look it at differently.
• for each segment (i,j) let cost(i,j) be 

the least
• cost(i,j) = least{(cost(i,p) + cost(p,j) + 

length(i,j) : all p}
• This is 0(n^3).
• It turns out we can do better.



  

Improvement
• Let P(i,j) be the position where 

cost(i,j) is minimized.
• It can be shown (icky maths) that
cost(i,j) = least{cost(i,k) + cost(k,j) : 

P(i,j-1) <= k <= P(i+1,j)}
• Complexity?
• O(n^2)



  

                        The End.
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